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Abstract: Continued fractions, premeditated since the moment of antique Greece, only became an 

authoritative means in the 18th century, in the hands of the enormous mathematician. This paper 

enlightens how Euler established the proposal of hyper-geometric polynomials and pooled up the 

two domains. Continued fractions play an important role in number theory and classical analysis ever 

since the time of Euler and Gauss. The most fascinating function of this article is to discuss various 

outcomes and applications domain continued fraction in terms of hyper-geometric polynomials.  As 

continued fractions turn out to be more significant in fraction suitable to their use in discovery of 

algorithms in estimation theory, illustration of the continuing consequence of their control.  

Index Terms:  Hyper-geometric polynomials, continued fraction, q- fractional operators, and  

  Euler’s theory. 

I. CONTINUED FRACTION  

Continued fraction expansions are implied in the Euclidian algorithm and are significant in giving 

coherent approximation of actual information. . Any pair x0 > x1 of positive integers generates a 

decreasing sequence x0 > x1 > x2 > ··· in the set N of all positive integers: 

x0 = b0x1 +x2, 

x1 = b1x2 +x3, 

x2 = b2x3 +x4, 

. 

. 

. 

xn−2 = bn−2xn−1 +xn 

  xn−1 = bn−1xn                                             ……………. (1) 

With bj ∈ N, j = 0 ,1 , . . . Since any decreasing sequence in N is finite, there exists n ∈ N such that 

for xn−1 = bn−1xn the algorithm stops at this line. This is the standard form of the Euclidean algorithm, 

which provides a foundation for multiplicative number theory. 

We will consider above mentioned equation as a system of linear algebraic equations with integer coefficients 

b0 ,b1 , b2, …. Eliminating the unknowns xk from that equation, we will obtain 

                      
𝑥𝑘−1

𝑥𝑘
=  𝑏𝑘−1 +

1

𝑥𝑘/𝑥𝑘+1
      k= 1,2,…….             …… (2) 

Which obviously yields the development of x0/x1 into a finite regular continued fraction? 
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the continued fraction is written in line form: 

                         
𝑥0

  𝑥1
= 𝑏0 +

1

𝑏1 + 

1

𝑏2 + …..  + 

1

𝑏𝑛−1 
      ………………… (4) 

This shows that any rational number equals the value of a regular continued fraction. 

II. HYPER GEOMETRIC POLYNOMIALS 

The Jacobi polynomials generally termed as hyper geometric polynomials 𝑃𝑛
(𝛼,𝛽)

(x) are a class of 

classical orthogonal polynomials. They are orthogonal with respect to the weight (1−x)α (1+ x)β on 

the interval [−1, 1]. 

 

Through Hyper-Geometric Function 

The hyper geometric polynomials are defined via the hyper geometric function as follows: 

            ….. (5) 

Where  (α+1)n is Pochhammer's symbol (for the rising factorial). In this case, the series for the hyper 

geometric function is finite; therefore one obtains the following equivalent expression: 

 

 

…… (6) 

 

III. ESTIMATION THEROY 

Approximation theory is a branch of mathematics, a quantitative part of functional analysis. 

Approximation theory is concerned with how functions can best be approximated with simpler 

functions, and with quantitatively characterizing the errors introduced thereby. Note that what is 

meant by best and simpler will depend on the application. Diophantine approximation deals with 

approximations of real numbers by rational numbers. Approximation usually occurs when an exact 

form or an exact numerical number is unknown or difficult to obtain. However some known form 

may exist and may be able to represent the real form so that no significant deviation can be found. 

Now we move to the approximation of real numbers by rational numbers. Our aim is to use the 

lowest denominator rational number possible and still get a nice approximation. How good a rational 

approximation can one get to a given real number α? One trivial rational approximation to α is a 

number a/q with      
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α – a/q     ≤ 1/2q ,             ………………. (7) 

ESTIMATION CONSTANT: 

Let x ∈ Ω: = [0, 1] \ Φ. The expansion of x as a regular continued fraction is denoted by  

x= [O; al, a2, a3 .... ]        ………………. (8) 

and the corresponding sequence of convergent by 

(
𝑃𝑛

𝑞𝑛
)      -1≤ n    ………………. (9) 

The operator T: Ω→ Ω is defined by  

Tx: = 
1

𝑥 
− [−

1

𝑥
]     ………………. (10) 

Hence, if x has the expansion (1.1)  

then      Tx = [0; a2, a3, a4 .... ]     ………………. (11) 

Therefore T is called the one-sided shift operator connected with the regular continued fraction. 

Finally we introduce the sequence of approximation constants (θn), -1≤ n with  

θn : =qn| qnx-pn|, -1≤ n   ………………. (12) 

Each convergent can be expressed explicitly in terms of the continued fraction as the ratio of 

certain multivariate polynomials called continuants. 

If successive convergents are found, with numerators h1, h2, ... and denominators k1, k2, ... then the 

relevant recursive relation is: 

hn = anhn − 1 + hn − 2, 

kn = ankn − 1 + kn − 2.            ………………. (13) 

The successive convergents are given by the formula 

hn/kn = anhn − 1 + hn − 2/ankn − 1 + kn − 2.  ……………. (14) 

REPRESENTATION OF POLYNOMIALS: 

Number r 0 1 2 3 4 5 6 7 8 9 10 

123 
ar 123 

          

ra 123 
          

12.3 
ar 12 3 3 

        

ra 12 37/3 123/10 
        

1.23 
ar 1 4 2 1 7 

      

ra 1 5/4 11/9 16/13 123/100 
      

0.123 
ar 0 8 7 1 2 5 

     

ra 0 1/8 7/57 8/65 23/187 123/1 000 
     

ϕ = 
√5 + 1/2 

ar 1 1 1 1 1 1 1 1 1 1 1 

ra 1 2 3/2 5/3 8/5 13/8 21/13 34/21 55/34 89/55 144/89 
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−ϕ = 
−√5 + 1/2 

ar −2 2 1 1 1 1 1 1 1 1 1 

ra −2 −3/2 −5/3 −8/5 −13/8 −21/13 −34/21 −55/34 −89/55 −144/89 −233/144 

√2 
ar 1 2 2 2 2 2 2 2 2 2 2 

ra 1 3/2 7/5 17/12 41/29 99/70 239/169 577/408 1 393/985 3 363/2 378 8 119/5 741 

1⁄√2 
ar 0 1 2 2 2 2 2 2 2 2 2 

ra 0 1 2/3 5/7 12/17 29/41 70/99 169/239 408/577 985/1 393 2 378/3 363 

√3 
ar 1 1 2 1 2 1 2 1 2 1 2 

ra 1 2 5/3 7/4 19/11 26/15 71/41 97/56 265/153 362/209 989/571 

1⁄√3 
ar 0 1 1 2 1 2 1 2 1 2 1 

ra 0 1 1/2 3/5 4/7 11/19 15/26 41/71 56/97 153/265 209/362 

√3⁄2 

ar 0 1 6 2 6 2 6 2 6 2 6 

ra 0 1 6/7 13/15 84/97 181/209 
1 170/1 35

1 
2 521/2 91

1 
16 296/18 8

17 
35 113/40 54

5 
226 974/262 0

87 

3√2 
ar 1 3 1 5 1 1 4 1 1 8 1 

ra 1 4/3 5/4 29/23 34/27 63/50 286/227 349/277 635/504 5 429/4 309 6 064/4 813 

e 
ar 2 1 2 1 1 4 1 1 6 1 1 

ra 2 3 8/3 11/4 19/7 87/32 106/39 193/71 1 264/465 1 457/536 2 721/1 001 

π 

ar 3 7 15 1 292 1 1 1 2 1 3 

ra 3 22/7 333/106 
355/1

13 
103 993/33

 102 
104 348/33

 215 
208 341/66

 317 
312 689/99

 532 
833 719/26

5 381 
1 146 408/36

4 913 
4 272 943/1 36

0 120 

Number r 0 1 2 3 4 5 6 7 8 9 10 

Continued fractions have also been used in modelling optimization problems for wireless network 

virtualization to find a route between a source and a destination. 

ra: rational approximant obtained by expanding continued fraction up to ar 

 

 

Mathematical Applications: 
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1. Differential Equations: The logarithmic derivatives of some hyper geometric functions for 

which quadratic transformations exist are solutions of Painlevé equations. 

2. Conformal Mappings: The quotient of two solutions of maps the closed upper half-

plane Iz≥ 0; conformally onto a curvilinear triangle. Hyper geometric functions, especially 

complete elliptic integrals, also play an important role in quasi conformal mapping. 

3. Group Representations: For harmonic analysis it is more natural to represent hyper 

geometric functions as a Jacobi function. For special values of α and β there are many group-

theoretic interpretations. First, as spherical functions on non compact Riemannian symmetric 

spaces of rank one, but also as associated spherical functions, intertwining functions, matrix 

elements of SL(2,R)(2,ℝ), and spherical functions on certain non symmetric Gelfand pairs.  

Harmonic analysis can be developed for the Jacobi transform either as a generalization of the 

Fourier-cosine transforms or as a specialization of a group Fourier transforms. 

4. Combinatory: In combinatory, hyper geometric identities classify single sums of products of 

binomial coefficients. 

5. Monodrama Groups: The three singular points in Riemann’s differential equation  lead to 

an interesting Riemann sheet structure. By considering, as a group, all analytic 

transformations of a basis of solutions under analytic continuation around all paths on the 

Riemann sheet. 

CONCLUSION: 

Continued fractions constitute a major branch of estimation theory because they have many 

applications within the field. First of all, they provide us with a method to find the best 

rational approximations of a finite and infinite numbers in the sense that no other rational 

with a smaller denominator is a better estimation. Continued fractions allow one to find 

solutions of polynomial equations with ease. Furthermore, continued fractions can be put to 

use in the rationalization of large integers.  
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